
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

On	the	Importance	of	Faster	Atomics	
S.D.	Hammond,	C.R.	Tro<	and	H.C.	Edwards,	Center	for	Scien?fic	Compu?ng	

Sandia	Na?onal	Laboratories/NM	

Unclassified Unlimited Release (SAND2017-9008C)

Outline	
§  Mo?va?ons	and	Background	

§  Exposing	Atomic	Opera?ons	in	Kokkos	

§  Performance	

§  Conclusions	

More Information: http://github.com/kokkos

Mo?va?ons	
§  Sandia	is	heavily	focused	on	making	sure	that	our	produc7on	applica7on	

codes	will	run	well	on	current	and	future	NNSA	Advanced	Technology	
System	(ATS)	
§  ATS-1	–	Trinity	(~9,500	dual-socket	Haswell,	~9,500	single-socket	KNL)	
§  ATS-2	–	Sierra	(~4,000	POWER9/Volta	(2018))	
§  ATS-3	–	Crossroads	?	(2020)	

§  For	all	of	these	pla?orms	we	need	to	have	performance	portable	algorithms	
and	source	code	
§  Kokkos	for	C++	Applica?ons	
§  OpenMP	for	Fortran	

Mo?va?ons	
§  Enabling	performance	portable,	on-node	parallel	algorithms	can	be	

extremely	challenging:	
§  Correctness	(developer	dependent,	some	tools	to	help)	
§  Portability	(Kokkos	helps,	but	developer	work	s?ll	required)	
§  Performance	(heavily	developer	dependent)	

§  In	order	to	meet	our	objec7ves	to	have	applica7ons	running	on	these	
machines	as	quickly	as	possible	
§  Need	to	keep	changes	to	code	to	a	rela?ve	minimum	
§  Keep	ini?al	algorithms	similar	to	prevent	significant	re-development/re-

coding	efforts	

Atomic	Opera?ons	
§  Atomic	opera7ons	in	many	ways	are	an	applica7on	enabler:	

§  Keep	roughly	serial	algorithms	but	provide	atomic	updates	to	(limited)	
regions	of	memory	which	threads	may	share	

§  Keep	code	changes	to	a	rela?vely	minimum	
§  Isolate	expensive	memory	updates	to	where	they	need	to	be	

§  Disadvantages	in	applica7ons:	
§  Floa?ng	point	rounding	differences	(floa?ng	point	ops	are	not	associa?ve)	
§  Varia?on	in	run?mes	if	conten?on	rates/effects	change	between	runs		
§  Can	be	expensive	

§  Required	for	lock-free	shared	data	structures	
§  Queues,	hash-maps,	...	

Alterna?ves	to	use	of	Atomic	Opera?ons	
§  Requires	new	algorithms	(e.g.	coloring/data	replica7on)	to	be	implemented:	

§  Expensive	in	applica?on	developer	?me	
§  Don’t	always	have	enough	parallelism	to	support	coloring	schemes	
§  Significant	code	churn	
§  Consumes	vast	amount	of	memory	if	thread	count	high	(data	replica?on)	

§  Advantages	of	alterna7ves	are:	
§  Poten?ally	higher	performance	(if	we	have	enough	parallelism)	
§  Less	performance	varia?on	between	runs	because	very	li<le	shared	

resources	
§  Strong	reproducibility	of	results	

Exposing	Atomics	in	C++	
§  C++11	introduced	atomic	memory	updates	into	the	standard	
§  But	...	std::atomic	is	fairly	clunky,	requires	specific	alloca?ons	etc.	

§  We	really	want	something	simpler	and	easier	to	use	
§  A	fix	has	been	proposed	for	C++20	

std::atomic<int> data;

void updateMe() {
data.fetch_add(1, std::memory_order_relaxed);

}

More Information: http://github.com/kokkos

Exposing	Atomics	in	Kokkos	
§  Don’t	require	“atomic”	types	(operate	over	any	type,	including	non-POD)	
§  Implement	a	lightweight	locking	system	based	on	pointer	address	for	types	not	

supported	by	hardware	atomics/CAS	

§  Much	simpler	to	use,	can	atomically	update	any	value	and	does	not	propagate	
through	the	type	system	

int data;

void updateMe() {
Kokkos::atomic_fetch_add(&data, 1);

}

More Information: http://github.com/kokkos

Performance	of	Atomic	Opera?ons	
§  We	have	developed	three	rough	“categories”	of	atomic-issue	rate	and	conten7on	

levels	from	some	of	our	ini7al	applica7on	ports:	
§  Histogram	(count	values	in	a	bin	in	parallel	and	update,	integers)	
§  MD	(LAMMPS	like	use	of	atomic	updates	to	reduce	duplicate	work,double)	
§  Matrix	Assembly	(accumulate	values	into	a	matrix	from	an	unstructured	mesh,	

double)	
§  Run	on	our	current	systems:	

§  GigaUpdates	per	second	
§  Ra?o	of	using	atomics	to	standard	memory	opera?ons	(i.e.	atomic	overhead)	
§  Run	in	the	“best	configura?on”	(Fastest	use	of	OpenMP/processes,	Single	Socket	

for	CPU	systems)	
§  Ra?o	to	non-atomic	is	performance	against	not	using	atomics	(incorrect	answers)	

Performance	of	Atomic	Opera?ons	

0.1

1

10

100

P100 K80 KNL (HBM) KNL (DDR) Haswell POWER8

G
ig

aU
pd

at
es

/S
ec

 (l
og

10
 S

ca
le

)

Atomics Performance
Histogram Histo-Padded MD Assembly

0

0.5

1

1.5

2

2.5

3

P100 K80 KNL (HBM) KNL (DDR) Haswell POWER8

R
at

io
 to

 N
on

-A
to

m
ic

 U
pd

at
es

Ratio to Non-Atomics
Histogram Histo-Padded MD Assembly

Note – Histogram has
higher contention rate

Histo-Padded provides padding for cache lines to prevent conflicts (uses more memory)

Discussion	
§  Atomics	are	clearly	very	fast	on	the	latest	genera?on	of	NVIDIA	Pascal	(P100)	

GPUs	due	to	hardware	enablement	at	the	cache	(“fire	and	forget”)	

§  CPUs	and	historically	struggled	with	fast	atomic	updates	because	they	add	a	
significant	number	of	addi?onal	opera?ons	into	the	instruc?on	stream	
§  and	..	Cache	line	sharing,	inability	of	compiler	to	easily	op?mize	around	

§  Faster	atomics	on	these	plalorms	and	easier	ways	to	program	atomics	would	
make	algorithm	development	for	next-genera7on	pla?orms	easier,	reduce	
programmer	burden	and	improve	compiler	informa7on	for	analysis	

Discussion	
§  Most	algorithms	have	rela?vely	low	(but	non-zero)	conten?on	rates	

§  Atomics	are	really	used	to	enable	correctness	for	the	very	limited	cases	
there	is	a	shared	data	conflict	

§  But	...	the	overhead	is	high	for	the	opera?ons	where	no	conten?on	occurs	

Conclusions	and	Posi?on		
§  Atomic	Memory	Opera7ons	are	poten?ally	a	lightweight	programming	choice	

to	introduce	thread	safety	and	parallelism	to	exis?ng	code	
§  Use	atomics	to	update	memory	loca?ons	you	know	may	have	conflicts	

§  C++11	introduced	atomics	to	the	language	standard	but	the	method	of	use	is	
less	than	ideal	for	minimizing	code	changes	
§  Fix	has	been	proposed	for	C++20	

§  Kokkos	provides	a	lightweight,	use	anywhere	implementa?on	for	C++	codes	

•  Need	beRer	hardware	support	to	reduce	the	overheads	in	our	applica7ons	

More Information: http://github.com/kokkos

